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This paper deals with a theoretical and experimental investigation on a rigid, rectangular
plate oscillating in the proximity of a fixed surface. The plate is suspended by springs. The
airloads generated by the oscillating motion of the plate are determined. Due to the fact
that the plate is rigid, the system is modelled as a 1-DOF system. The influence of the
surrounding air is detected by changes in the plate’s natural frequency and damping. For
the behaviour of the air in the gap between the plate and the fixed surface an analytical
solution is presented. This solution includes the effects of inertia, viscosity, compressibility
and thermal conductivity. It is shown that the main parameters governing the motion of
the air in the gap are the shear wave number, the reduced frequency, the narrowness of
the gap and the aspect ratio of the plate. With these parameters the validity of several
simplifications can easily be demonstrated and solutions, given in the literature, can be put
in perspective. Special experiments were carried out with an oscillating solar panel in order
to verify the analytical model. The analytical results and the experimental results show fair
agreement. The solutions shows that for low shear wave numbers the effects of viscosity
cannot be discarded.
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1. INTRODUCTION

This paper deals with the air loads on a rigid rectangular plate oscillating normal to a fixed
surface. These forces can be interpreted as an added mass, added stiffness and added
damping for the oscillating plate. For the behaviour of the air in the gap between the plate
and the fixed surface an analytical solution is presented. The solution includes the effects
of inertia, viscosity, compressibility and thermal conductivity. The solution is written in
terms of dimensionless parameters that govern the behaviour of the air. The advantage
of this approach is that, in contrast with previous publications in this area, the range of
validity can be determined relatively easy and the validity of several simplifications can
be justified. After an overview of the literature on the subject [1–29], the analytical solution
is discussed. Special attention is paid to the effects of viscosity and thermal conductivity.
In order to compare the results from the analytical solution with the results from a
standard technique, based on the wave equation, finite element calculations were carried
out. In these calculations the air is represented as a compressible, inviscid medium. The
finite element results can directly be compared with the analytical results when the effects
of viscosity and thermal conductivity are ruled out in the analytical model. Finally, an
experimental set-up is discussed. This set-up is used to measure the eigenfrequency and
the damping of the system. The experiments, described in the literature, all deal with very
small gap widths, e.g., 0·1 mm. For these gaps widths low but significant damping levels
in the frequency range of interest were found. However, such a small gap width is difficult
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to control and consequently the accuracy of the results is often not very clear. A further
drawback is the fact that the amplitude of oscillation has to be kept very small in order
to avoid non-linearities.

The experimental set-up presented in this paper was specially designed to avoid many
of these problems. With the help of the aforementioned dimensionless parameters a large
scale set-up was constructed. Typical properties of the set-up are as follows: plate
dimensions 0·98×0·98 m, gap widths 3–650 mm and a frequency range from 1–10 Hz.
With this set-up damping values up to almost critical damping were measured with
satisfying accuracy. Calculations and experiments show good agreement.

2. FORMULATION OF THE PROBLEM

A rigid, rectangular plate, is considered suspended on springs attached to the corners
of the plate (see Figure 1). The plate is located parallel to a fixed surface and performs
small harmonic oscillations normal to the surface. The distance between the plate and the
fixed surface, h�(t) is given by

h�(t)= h0[1+ h eivt], (1)

where h0 is the mean distance between the plate and the fixed surface, h is the dimensionless
amplitude of the oscillation, v is the angular frequency and t refers to time. (A list of
symbols is given in Appendix E.)

The x and the y co-ordinates are the in-plane co-ordinates; the z direction is the direction
normal to the fixed surface. The origin is located on the fixed surface at the centre of the
plate. The plate has dimensions of 2lx in the x direction and 2ly in the y direction. The
co-ordinates are made dimensionless according to:

x= x̄/lx , y= ȳ/ly , z= z̄/h0. (2)

It is also possible to introduce dimensionless co-ordinates with respect to the acoustic wave
length, i.e., x=vx̄/c0,y=vȳ/c0. The appropriate form of the ‘‘narrow gap’’ equation (see
section 4) is then valid for w/uW 1, w/vW 1, kW 1 and k/sW 1. Evidently, both methods
finally result in the same expression for the pressure distribution in the gap. In this
investigation the approach with non-dimensional co-ordinates based on the plate
dimensions is preferred, since it enables a direct connection to be made with the
dimensionless form of the differential equation which governs the behaviour of a flexible
plate.

The forces acting on the plate due to the pressure distribution in the gap are calculated.
The plate is assumed to be rigid. Therefore any uncertainty with respect to the dynamical
behaviour of the plate is excluded. The boundary condition p=0 is applied (see Figure 2).
This is a simplification, since the pressure distribution outside the gap will be affected by
the pressure distribution in the gap and vice versa. For narrow gaps, however, the
magnitude of the pressure perturbation in the gap is very large compared to the magnitude

Figure 1. Oscillating plate.
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Figure 2. Fluid region.

of the pressure perturbation outside the gap. Therefore the boundary condition p=0 is
a realistic assumption, as is confirmed by straightforward potential flow calculations and
a comparison between numerical and experimental results.

3. OVERVIEW

The basic equations for the behaviour of the air in the gap are derived in section 3.1.
The equations are written in a dimensionless form. The resulting dimensionless parameters
characterize the behaviour of the air. The advantage of this approach is that, in contrast
with previous publications in this area, the validity of solutions can be determined
relatively easy. The parameters are used in section 3.2 to compare the various solutions
given in the literature.

3.1.  

The motion of the air in the gap is governed by the following equations: the Navier
Stokes equations, the equation of continuity, the equation of state for an ideal gas and
the energy equation. An approach similar to that of Tijdeman [2] is followed, resulting
in the introduction of a number of assumptions: no internal heat generation; homogeneous
medium, which implies that the gap width and the wave length must be large in comparison
with the mean free path—for air at normal atmospheric conditions this assumption breaks
down for h0 Q 10−7 m and fq 108 Hz; no mean flow; small, sinusoidal perturbations; no
circulation and no turbulence.

The steady state condition is characterized by a zero mean velocity, a mean pressure
p0, a mean density r0 and a mean temperature T0. The undisturbed speed of sound c0 is
used to non-dimensionalize the velocities. Small dimensionless perturbations (u, v, w, p, r

and T) upon the steady state condition are introduced:

ū= c0u(x̄, ȳ, z̄) eivt, p̄= p0[1+ p(x̄, ȳ, z̄) eivt], v̄= c0v(x̄, ȳ, z̄) eivt,

r̄= r0[1+ r(x̄, ȳ, z̄) eivt], w̄ = c0w(x̄, ȳ, z̄) eivt, T� =T0[1+T(x̄, ȳ, z̄) eivt]. (3)

The basic equations are linearized and written in a dimensionless form. A set of six linear
differential equations is obtained. Together with the appropriate boundary conditions
these equations suffice to determine all unknown quantities. Details of the derivation of
these equations are given in Appendix A. The resulting linearized equations are written
as

iu=−
g
k

1
g

1p
1x

+
1
s2 $g2 12u
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s2s2 $g2 12T
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g %p, (7–9)

where

s= h0zr0v/m shear wave number, s=zmCp /l square root of the Prandtl number,

k=vh0/c0 reduced frequency,

g=Cp /Cv ratio of specific heats, g= h0/lx narrowness of the gap,

a= ly /lx aspect ratio of the plate. (10)

The dimensionless parameters, specified in equations (10), characterize the behaviour of
the air in the gap. The values for s and g can be regarded as constants for a specific gas,
e.g., air. The parameters g and a are geometry dependent. The aspect ratio of the plate
is assumed to be equal to or larger than one: ae 1, according to a proper choice of the
x and y directions. The two main parameters are the shear wave number, s, (sometimes
also referred to as the Stokes number) and the reduced frequency, k. The shear wave
number is a measure of the ratio between inertial and viscous forces. Hence, the shear wave
number is an important quantity that governs the validity of several simplifications. The
reduced frequency is a measure of the ratio between the gap width and the acoustic wave
length.

3.2.       

The problem of a plate vibrating in the direction normal to a fixed surface has been the
subject of investigation in several scientific disciplines. In fluid mechanics the research was
mainly aimed at the calculation of the steady streaming generated by the vibrating plate.
This subject is strongly related to the well-known squeeze film damping in tribology.
Tribologists have investigated squeeze film damping for more than a century. More recent
research on this subject was initiated in the field of acoustics. A short overview of the
research done in the mentioned disciplines will be given. The overview is summarized in
Table 1. As far as possible, for the experiments the test range in terms of the shear wave
number is indicated.

3.2.1. Fluid mechanics
When the plate performs lateral oscillations in its own plane the behaviour is governed

by the linear equations of parallel flow. The solution for this problem was given by Lamb
in 1932 [4]. When the plate oscillates normal to its own plane no exact solutions of the
full unsteady Navier–Stokes equations are known to the present authors. Several
publications deal with simplified situations. Kuhn and Yates [5] were the first to include
inertial terms but they still ignored the second order in-plane velocity derivatives for the
viscous part in the Navier–Stokes equations. Terrill [6] considered the full Navier–Stokes
problem. He used a perturbation method in order to obtain a solution and expanded the
solution in terms of the small amplitude of oscillation.
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Ishizawa [7] used the same basic equations but he expanded the solution in terms of a
modified Reynolds number. This modified Reynolds number is related to the shear wave
number s according to:

‘‘Modified Reynolds number’’0 h2
0r0v/m= s2 (11)

Ishizawa pursued a perturbation to second order and obtained the steady streaming. The
first order terms are purely oscillatory and have a zero mean value. The second order terms,
however, are composed of an oscillatory flow of twice the basic frequency and a steady
part. The steady part induces a mean lift acting on the plate. The paper by Wang and
Drachman [8] describes a method to calculate the motion of the fluid when the plate
performs both normal and lateral oscillations. Their investigations showed that the steady
lift depends on the normal oscillation only. Ramamurthy and Rao [9] extended the work
of Wang and Drachman to fluids with dust particles.

3.2.2. Tribology
The behaviour of a squeezed film between two surfaces was first studied by Stefan in

1874 [10]. He considered the case of two rigid circular plates performing out of phase
normal oscillations. In 1886 Reynolds [11] extended this work to arbitrarily shaped
surfaces. Reynolds’ lubrication theory has been used in a large number of problems. In
his theory the inertial terms are neglected: due to the high rate of shear the inertial forces
are assumed to be negligible compared to the viscous forces. In the last decades, however,
increasing machine speeds and low viscosity lubricants have necessitated the inclusion of
inertial effects. The developments of gas bearings for instance demanded a profound
knowledge of the inertial effects.

Kahlert [12] and Brand [13] were the first who recognized that the importance of inertia
depends upon the ‘‘modified Reynolds number’’, as specified in the previous section on
fluid mechanics. They demonstrated that inertial terms become significant when the
Reynolds number is of order unity or higher. Since then, a lot of research has been done
on the influence of inertia. Besides the modified Reynolds number two other dimensionless
parameters appear in the tribology research: the ‘‘Sommerfeld squeeze number’’ and the
‘‘squeeze velocity number’’. Both parameters can be expressed in terms of the parameters
specified in section 3.1:

‘‘Sommerfeld squeeze number’’0 mv/p0 = gk2/s2,

‘‘Squeeze velocity number’’0 r0v
2h2

0 /p0 = gk2. (12)

There is a strong connection between tribology and fluid mechanics. Therefore it is hard
to judge whether some research should be addressed as tribology or fluid mechanics
research.

3.2.3. Acoustics
An important aspect in the field of acoustics concerns the calculation of fluid–structure

interaction. In such calculations the influence of the surrounding fluid, in most cases air,
on the vibrating structure is taken into account. Usually the fluid is modelled as
compressible, inviscid medium with no mean flow. Under these conditions the behaviour
of the fluid can be represented with the wave equation. When thin fluid layers however
are trapped between surfaces of vibrating structures, the viscosity can no longer be
neglected.

The damping of gas films was experimentally investigated by Ungar and Carbonell [19].
An explanation for the phenomena observed in their experiments was given in the theory
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of Maidanik [20]. He found that the damping was caused by the pumping of the gas. He
applied a statistical approach of the structural wave field for high frequencies.

The more recent research in this field can be divided in three groups. The first group
is concerned with the calculation of the dynamical behaviour of long, thin plates backed
by a thin fluid layer. In 1980 Fox and Whitton [21] developed a method to calculate the
damping of structural vibrations by thin gas films for the lower frequency modes. Their
fluid model included the effects of inertia, viscosity, compressibility and thermal
conductivity. Recently, O� nsay [26] used this model to investigate the effect of the fluid layer
thickness on the vibrational behaviour of a plate-fluid system. Both Fox and Whitton and
O� nsay performed a number of experiments in order to validate their calculations.

The second group is concerned with the dynamical behaviour of infinite plates, separated
by a thin fluid layer. Trochidis [22] presented a report concerning the damping of flexible
plates. In his calculations the plates were assumed to be of infinite length. Furthermore,
it was assumed that the deformation of the plates can be regarded as one-dimensional: the
displacements vary in one direction only. The importance of viscous effects was illustrated
with a number of experiments. Möser [23] used a similar model, but he also included the
effects of compressibility in his model with infinite plates. The practical application of
squeeze film damping with air was investigated by Chow and Pinnington [24]. They
developed an impedance method in order to calculate the loss factor of two infinite plates,
separated by a thin gas layer. In 1988 they extended this theory to calculate the loss factor
of a plate–liquid system [25]. For the high frequency range a statistical energy approach
(SEA) was applied. The methods were used to develop configurations with high loss
factors. Calculations and experiments showed that a significant amount of damping could
be achieved with the squeeze film damping mechanism.

The third group is concerned with the interaction between a vibrating membrane and
a thin layer of fluid. A recent investigation in this area was presented by Bruneau, Bruneau
and Hamery [29]. In this investigation a model is presented which describes the behaviour
of thin fluid films trapped between a vibrating membrane and a backing wall. As a starting
point linearized equations are used, including the effects of thermal conductivity and
viscosity. The model allows for a pressure gradient across the film thickness. The solution
however is not written in a non-dimensional form. Furthermore it is difficult to extend their
solution technique, used to describe the interaction with a vibrating membrane, to the
interaction with vibrating plates.

4. THE ‘‘NARROW GAP’’ SOLUTION

4.1. ‘‘ ’’ 

When the gap width is small in comparison with the dimensions of the plate, and the
velocity w is negligible with respect to the in-plane velocities u and v (i.e., gW 1, g/sW 1,
w/vW 1 and w/uW 1), the basic equations (4–9) of section 3.1 can be simplified to:

iu=−
g
k

1
g

1p
1x

+
1
s2

12u
1z2 , iv=−

g
ak

1
g

1p
1y

+
1
s2

12v
1z2, 0=−

1
k

1
g

1p
1z

, (13–15)

g
1u
1x

+0ga1 1v
1y

+
1w
1z

=−ikr, p= r+T, iT=
1

s2s2

12T
1z2 + i$g−1

g %p. (16–18)

This set of equations can be rewritten as the equations derived by Fox and Whitton [21],
which were not presented in a dimensionless form. In their analysis however they did
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conclude that the importance of inertia and viscosity depends on a dimenionless parameter
(u).

This quantity is in fact directly related to the shear wave number according to

u0 h0zr0v/2m= 1
2z2s. (19)

Equation (15) shows that the pressure perturbation p is constant across the gap width for
narrow gaps. The set of equations can be solved analytically. A detailed derivation of the
solution can be found in Appendix B. The solution for the dimensionless pressure
perturbation p is written as

p=
4
p

1
g2

k2gh
B(s)

s
a

q=1,3,5..

1
q

(−1)(q−1)/2

D2 $1−
cosh (Dx)
cosh (D) % cos 0qp

2
y1, (20)

where

B(s)=2$1−cosh (szi)

szi sinh (szi)%+1, D=X0qp

2 1
2

01a1
2

−
k2g

g2B(s)n
,

n=$1−$g−1
g %B(ss)%

−1

. (21–23)

The same result is obtained if, instead of the energy equation and the equation of state,
the following polytropic relation is used:

p̄/r̄n =constant. (24)

The polytropic constant, n, relates pressure and density. Evidently, the value of the
parameter n, as given in equation (23), now accounts for the thermal effects. A detailed
discussion on this constant is given in the next section.

4.2.     ‘‘ ’’ 

The ‘‘narrow gap’’ solution is based on the assumptions specified in section 3.3. In
Appendix C it is shown that for large shear wave numbers the ‘‘narrow gap’’ solution
reduces to a modified form of the wave equation: viscous forces can be neglected. For low
shear wave numbers a linearized version of the Reynolds equation is obtained (see
Appendix D): inertial forces can be neglected. The main characteristics of the narrow gap
solution are summarized in Figure 3.

4.2.1. In-plane velocity profile
The transition from viscous dominated flow to inertial dominated flow can be illustrated

with the in-plane velocity profile. The shape of this profile depends on the value of the
shear wave number. In Figure 4 the magnitude of the velocity in the x direction across
the gap is given for different shear wave numbers. For high values a plane velocity profile
is obtained. For very low shear wave numbers viscous forces dominate and the velocity
profile reduces to the parabolic Poiseuille profile.

4.2.2. Thermal effects
The equation of state and the energy equation can be combined in the form of the

polytropic relation (strictly speaking only in a layer-integrated sense, see Appendix B). The
influence of the thermal conductivity is found in expression (23) for the polytropic constant
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Figure 3. Main characteristics of the ‘‘narrow gap’’ solution.

n. This constant is a function of the product of the shear wave number and the square
root of the Prandtl number. The value of the constant n is influenced only by the thermal
conductivity of the air, because the product ss does not contain the viscosity m. As can
be seen from the definition of the function B(s), the polytropic constant generally will be
a complex quantity. This implies that there is a phase shift between the pressure
perturbation p and the density perturbation r. The value of n as a function of the product
ss is depicted in Figures 5 and 6. It can be seen that for low values of ss the polytropic
constant reduces to 1 (Reynolds equation), which implies that the process occurs
isothermally. For high values of ss the process however occurs isentropically
(adiabatically) and n takes the value of g (wave equation).

5. DYNAMICAL BEHAVIOUR

5.1.  

The plate is assumed to be rigid, to move only in the z direction and to remain parallel
to the fixed surface. The system can therefore be regarded as a single-degree-of-freedom-

Figure 4. Velocity profile, magnitude.
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Figure 5. Magnitude of n.

Figure 6. Phase angle of n.

system. When the pressure distribution in the air outside the gap is neglected, the forces
acting on the plate are F�ex , the harmonic excitation force generated by an electrodynamic
shaker, F�gap , the force acting on the lower side of the plate due to the pressure distribution
in the gap between the plate and the fixed surface, and F�springs , the spring forces; the plate
is suspended on eight springs, two at each corner, and every spring has a stiffness k.

The forces are written as

F�ex = lxlyp0Fex eivt, F�gap = lxlyp0Fgap eivt, F�springs =8kh0h eivt. (25)

From the equation of motion for the oscillating plate it follows that

−v2mh0h= lxlyp0[Fex +Fgap ]−8kh0h. (26)

The transfer function H(v) relates the force and the displacement according to

H(v)= h0h/lxlyp0Fex . (27)

For a system with viscous damping it is more convenient to use the mobility function,
representing the transfer function between velocity and force. The mobility function is
obtained by multiplying H(v) by iv. Inserting the expressions for the air load, see
(equation B.24), finally gives

Y(v)= iv>0−v2m−
lxlyp0

h0 $ 32k2g

p2g2B(s)
s
a

q=1,3,5..

1
q2

1
D2 $1−

tanh (D)
D %%+8k1. (28)

The eigenfrequency and the damping coefficient of the system are extracted from a Nyquist
plot of the mobility function.

5.2.  

When the influence of the surrounding air is neglected and the structural damping is
assumed to be negligible (this is confirmed in the tests described in section 7), the
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plate–spring system can be regarded as an undamped single-degree-of-freedom system with
mass m and stiffness 8k. The surrounding air however will affect the dynamical behaviour
of the plate. Usually the air load can be split up into an added mass, an added stiffness
and an added damping. An analysis of the load term in the mobility function (28) however
reveals that this concept is not straightforward for this situation. The expression for the
resulting air load is a general, complex function of the angular frequency.

The imaginary part of the force could be used to extract the amount of added damping.
Added mass and added stiffness however are, as in the experiments, not directly separable.
In the calculations, however, one can define an artificial separation. For instance, the
added stiffness can be related to the effects of compressibility. For this choice one obtains
the amount of added mass by assuming the air to be incompressible. The added stiffness
is then determined from the difference between compressible and incompressible
behaviour.

However, the added stiffness would strongly depend on the frequency. This indicates
that a split-up of the airload is rather arbitrary. Therefore the physical interpretation of
the results will be based on a direct analysis of the force expression. Four aspects that
influence the force are the narrowness of the gap, the viscosity, the aspect ratio and the
compressibility.

5.2.1. Narrowness of the gap
One of the most important quantities that governs the air load is the narrowness of the

gap, g. The force shows a strong increase with decreasing gap width. An analysis of the
several terms concludes that for small gap widths the real part of the force is proportional
to h−1

0 . The imaginary part, related to the damping, is proportional to h−3
0 : it can be

interpreted as a flow resistance term. In physical terms, the narrowness of the gap is
associated with the amount of pumping in the gap. The motion of the air is mainly
perpendicular to the motion of the plate (see Figure 7). It can easily be seen that this
pumping effect increases with decreasing gap width.

5.2.2. Aspect ratio of the plate
The force is a function of the aspect ratio of the plate. It can easily be verified that for

large aspect ratios the resulting force reduces to

F�gap =(lxlyp0/h0)[4k2gh/g2B(s)]. (29)

5.2.3. Viscosity
A very interesting point is the role of the viscosity. The viscosity affects both the real

and the imaginary part of the function B(s). The damping depends on the viscosity, as
expected. However, the eigenfrequency of the system is also affected by the viscosity. In
this investigation the phase resonance frequency is used: the eigenfrequency of the
corresponding undamped system.

Figure 7. Pumping effect.
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Therefore the eigenfrequency is, by definition, not influenced by the damping. The
eigenfrequency shift due to viscosity may seem surprising. Simply speaking one would
expect the viscosity to affect the damping, but not the eigenfrequency. The change in
frequency can be attributed to the change in the velocity profile in the gap. For low shear
wave numbers there is a parabolic profile, whereas for high shear wave numbers the
velocity profile is flat. It is therefore important that, even for a correct estimation of the
eigenfrequency, the viscosity is taken into account.

5.2.4. Compressibility
In the calculations one can easily eliminate the effects of the compressibility. For

incompressible behaviour, the function D (see equation (22)), reduces to:

Dinc =(qp/2)(1/a). (30)

Compressibility effects are therefore important when:

=k2g/g2B(s)n = 3 (p/2)2(1/a)2. (31)

This can be rewritten as

=vly /ceff (v) = 3 p/2, (32)

where ceff (v) is an effective speed of sound:

ceff (v)= c0z(n/g)B(s). (33)

The effective speed of sound is affected by viscous effects, accounted for in B(s), and
thermal effects, accounted for in n. In physical terms, expression (32) now simply states
that compressibility effects are important when the effective acoustic wave length is of the
same order of magnitude as the plane length. This is in accordance with expectations.

6. FINITE ELEMENT CALCULATIONS

In order to compare the results from the analytical solution with the results from a
standard technique, based on the wave equation, finite element calculations were carried
out. In these calculations the air is represented as a compressible, inviscid medium. The
finite element calculations were carried out for the experimental setup (see section 7) with
the finite element program ANSYS 5.0. A rectangular solar panel is suspended on eight
springs, two at each corner. The panel has a mass m and (equivalent) Young’s modulus
E; each spring has a stiffness k. The thickness of the panel is 0·022 m. Because the plate
is modelled as an elastic body, it will not be perfectly rigid. The deformation of the plate
however is shown to be negligible in the frequency range of interest. This range is far below
the first elastic eigenfrequency of the panel. The gap width between the plate and the fixed
surface can be varied between 2 and 650 mm. The following properties are taken according
to the measurements:

m=2·516 kg, k=1178 N/m, E=2·61×109 N/m2,

lx =0·49 m, ly =0·49 m. (34)

The properties of the surrounding air at standard atmospheric conditions are

r0 =1·2 kg/m3, c0 =343 m/s. (35)

The panel is modelled with three-dimensional eight-node solid elements, type SOLID45.
The degrees of freedom at each node are the displacements. In ANSYS the air is
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Figure 8. Finite element mesh.

represented as a compressible, inviscid medium. The behaviour of the air is therefore
governed by the wave equation. Three-dimensional eight-node acoustic elements, type
FLUID30, were used. For the acoustic elements, the pressure perturbation is the degree
of freedom at each node.

With the use of symmetry the mesh is reduced to 1/4 of the system (see Figure 8). In
the numerical calculations, the two springs at each corner are replaced by a single spring
with a double stiffness. The boundary condition for the planes of symmetry and the fixed
surface is that the pressure gradient normal to the wall should vanish. In physical terms,
this condition states that the velocity of the air normal to the surface is equal to zero. This
condition is automatically satisfied in the ANSYS program when no other boundary
conditions are specified.

The boundary conditions for the other air boundaries is chosen as p=0. This is a
simplification of the Sommerfeld radiation condition, which states that all waves are
outgoing. The condition p=0 however will give reliable results when the dimensions of
the surrounding air domain are sufficiently large (without introducing standing waves of
course). As a test case, the added mass was calculated for an oscillating plate in an infinite
air domain for a number of mesh dimensions. The results learn that for an air domain
of 1·50×1·50 (in-plane)×2·85 m (perpendicular to the plate) for the 1/4 system, the
added mass differs only 3·8% from the value given in the literature [3]. This justifies the
application of the boundary condition p=0 for the finite element calculations.

7. COMPARISON WITH EXPERIMENTS

7.1.  

In order to measure the effects of the surrounding air, a relatively light and stiff plate
has to be used. A solar panel is very well suited for this purpose. The measurements were
carried out with a square ECS panel (by courtesy of Fokker Space & Systems) of
0·98×0·98 m. The panel consists of two carbon skin plates separated by a honeycomb
structure of thin aluminium sheet. The plate is suspended on eight springs, two located
at each corner (see Figure 9). The panel is excited by an electrodynamic shaker, which is
attached to the centre of the plate. The signal from an accelerometer is used as
feedback for the shaker to keep the displacement amplitude constant. The fixed surface
is a rectangular rigid plate of 2·20×1·80 m which is mounted on the frame under
the plate. Figure 9 shows the experimental set-up. The undamped eigenfrequency
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fn (phase resonance frequency) and the corresponding damping coefficient are measured
as functions of the gap width. During the measurements the temperature is registered. It
is used to exclude the influence of temperature differences on the density of the air. The
influence of temperature on the other properties of the air is negligible. The properties of
interest are

m=2·516 kg, lx =0·49 m, ly =0·49 m, R0 =287 J/kgK,

Cp =1004 J/kgK, Cv =716 J/kgK,

r0 =1·2 kg/m3, c0 =343 m/s, l=25·6×10−3 W/mK,

m=18·2×10−6 Ns/m2, k=1178 N/m, T0 =290 K. (36)

7.2.  

The experimental set-up is characterized by the value of the dimensionless parameters,
as defined in section 3.1. The main parameter governing the motion of the air in the gap
is the shear wave number. For large gaps the viscosity of the air can be neglected, whereas
for small gaps viscous effects become dominant. The distance between the panel and the
fixed surface, h0, can be varied from 2 up to 650 mm. For this range of gap widths the
shear wave number varies between 1·28 and 1328. As s is a constant for air, the product
ss varies between 0·8 and 1040. This implies that for narrow gaps the process in the gap
is isothermal, while for large gaps it occurs adiabatically.

These considerations indicate that even for a relatively large gap, e.g., 2 mm, the shear
wave number is very low. Because of the fact that the panel is very light, the amount of
damping due to viscothermal effects will be substantial. In the literature most experiments
are carried out at considerably higher frequencies. In order to obtain low shear wave
numbers, one has to resort to very small gaps. Furthermore most experiments were carried

Figure 9. Experimental set-up.
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Validation procedure, measurement results

Measured added mass (kg)
ZXXXXXXXXXXCXXXXXXXXXXV

Added mass (kg) h0 =650 mm h0 =35 mm h0 =10 mm

0·0487 0·0499 0·0508 0·0506
0·1006 0·1042 0·1041 0·1026
0·1493 0·1493 0·1536 0·1541
0·2006 0·2056 0·2040 0·2052

out with relatively stiff and heavy materials. The air loads will therefore have a relatively
small influence.

It should be noted that by varying the gap width not only the value of the shear wave
number is affected. Another important parameter, the reduced frequency k, varies between
10−5 and 0·12; the condition kW 1 is therefore satisfied. The geometrical parameter g varies
between 0·004 and 1·33. This illustrates that the gap width can be varied from ‘‘very small’’
to ‘‘large’’.

7.3.     

The experimental set-up is used to measure the shift in eigenfrequency and the damping
originating from the pressure distribution in the gap. The measurement procedure was
validated by adding a known mass to the panel. The shift in phase resonance frequency
was measured and used to determine the added mass. The measurement results for three
different gap widths are listed in Table 2. The table shows that the added mass was
measured to be within 3% of the actual, manually added, mass. So, it can be concluded
that the set-up is suited for the measurements in this investigation.

7.4.    

The accuracy of the experiments is affected by several mechanisms. In order to determine
the accuracy of the results, a number of tests were carried out.

7.4.1. Parasitic oscillations
Parasitic oscillations will affect the dynamical behaviour of the system. In order to

determine if any parasitic motions were present, accelerations of the panel and the frame
were measured in several directions. Two parasitic oscillations, an in-plane motion of the
plate and a frame vibration, were identified. Structural modifications were applied whereby
the parasitic motions were eliminated.

7.4.2. Deformation of the panel
Another oscillation that might affect the accuracy of the results is the deformation of

the panel. The first elastic eigenfrequency of the panel in air is 49 Hz. In order to consider
the panel as rigid, the frequency range of interest should be far below 49 Hz.

The stiffness of the springs was chosen in such a way that the first eigenfrequency of
the plate–spring system in vacuum is 9·74 Hz. Due to the influence of the surrounding air,
the eigenfrequency will decrease compared to that for the system situation in vacuum. The
frequency range of interest therefore was chosen to be 1–10 Hz, and the panel was assumed
to be rigid. During the experiments, the deformation of the plate was measured. With three
accelerometers, mounted on the plate, the accelerations were measured to check if the plate
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indeed behaves rigidly. The measurements showed that the accelerations of the points
mutually differ at most by 4%, which justifies the assumption of rigidness.

7.4.3. Compliance of the fixed surface
The compliance of the fixed surface was measured with accelerometers The

measurements showed that the amplitude of oscillation for the fixed surface is less than
1% of the amplitude of oscillation of the panel. The fixed surface can therefore be regarded
as rigid.

7.4.4. Tilting of the fixed surface
In order to determine the influence of tilting, measurements were carried out for small

tilting angles. For gap widths of 35, 10 and 6 mm, tilting angles of respectively 1·2, 0·5
and 0·5 degrees were used. For the panel of interest, with a length of 0·98 m, this means
a variation in gap width of respectively 20, 2 and 2 mm. The results show that the added
mass and the added damping differ less than 5% for these tilting angles. Because of the
fact that global quantities (eigenfrequency and damping) are measured, the sensitivity for
small tilting angles is limited.

7.4.5. Planeness of the surfaces
The most important quantity that governs the accuracy of the experimental results is

the planeness of the surfaces. Due to the shape of both the panel and the fixed surface
the accuracy is affected. For a certain gap width the distance between the panel and the
fixed surface was measured at several points between the panel and the fixed surface. The
gap width was not constant but varied with position: 20·8 mm. This could mainly be
attributed to the non-planeness of the fixed surface. With a least squares technique the
accuracy was improved. The gap width data were used to find the position of the fixed
surface that would lead to the best constant gap width. Correspondingly the gap width
was then adjusted in three points for each measurement. Due to this correction, the error
which is introduced by the non-planeness of the surfaces could be reduced to 20·4 mm
in gap width. The measurements could therefore be carried out with a satisfying accuracy,
especially in respect to the accuracies reported in previous papers in this area.

7.4.6. Non-linear effects
The theory used in the present investigation is based on linearized equations. In the

experiments the amplitude of oscillation of the panel therefore has to be small compared
to the gap width. In order to determine if any non-linear effects are present a number of

Figure 10. Amplitude of transfer function H(v).
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T 3

Experimental results

h0(mm) fn(Hz) j(%) s k g

650 8·557 0·20 1223 10·3E−02 1·33E+00
150 8·303 0·12 278 23·0E−03 30·6E−02
80 7·994 0·20 146 11·8E−03 16·3E−02
50 7·635 0·32 88·9 7·05E−03 10·2E−02
35 7·277 0·52 60·8 4·71E−03 71·4E−03
25 6·871 0·84 42·2 3·14E−03 51·0E−03
15 6·139 1·83 23·9 1·70E−03 30·6E−03
12 5·767 2·60 18·5 1·28E−03 24·5E−03
10 5·441 3·51 15·0 1·01E−04 20·4E−03
8 5·050 5·04 11·6 7·47E−04 16·3E−03
6 4·533 8·24 8·22 5·03E−04 12·2E−03
5 4·217 11·59 6·61 3·90E−04 10·2E−03
4 3·839 18·78 5·04 2·84E−04 8·16E−03
3·5 3·599 24·55 4·27 2·33E−04 7·14E−03
3 3·337 35·71 3·53 1·85E−04 6·12E−03

experiments were carried out with different amplitudes of oscillation. For gap widths of
50, 15 and 8 mm measurements were performed with amplitudes varying from 0·3 up to
1·8 mm. In all situations the eigenfrequency and the damping were not affected by the
amplitude of motion.

7.4.7. Flow around plate edges
The flow around the plate edges was visualized with smoke tests. In the frequency and

amplitude range of interest the motion of the air was laminar. No vortices or irregularies
in the flow pattern were observed.

7.5.  

Typical results for the transfer function are given in Figure 10. This figure learns that
the shift in eigenfrequency is relatively large. If one assigns this frequency shift to an added
mass effects, this reveals that the added mass of the air is relatively large. The strong
increase in added mass is illustrated by the following example: for a gap of 3 mm, the
amount of added mass for the experimental set-up would be about 22 kg, while the mass
of the panel is only 2·5 kg! The sharp increase in damping is illustrated by the flattening

Figure 11. Eigenfrequency versus gap width. r, ANSYS 5.0; w, experiment; ——, analytical.
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Figure 12. Damping coefficient versus gap width. w, Experiment; ——, analytical.

of the transfer function. The pumping effect induces high viscous losses, which results in
damping of the panel. For a gap of 3 mm, the dimensionless damping coefficient j is 35%:
the panel is almost critically damped. The experimental results are summarized in Table 3.
For each gap width the eigenfrequency, the damping coefficient and the dimensionless
parameters are listed.

7.6.     

The measured and the calculated eigenfrequencies are depicted in Figure 11. Because
of the fact that, due to a change in gap width h0, a number of dimensionless parameters
change in value, the figure is not plotted in a non-dimensional form. Figure 11 shows that
there is a strong decrease in eigenfrequency with decreasing gap width. The results from
both the finite element calculations and the ‘‘narrow gap’’ solution show fair agreement
with the experimental results. For very small gaps the finite element calculations
overestimate the eigenfrequency because the viscosity of the air is neglected.

The corresponding dimensionless damping coefficients are depicted in Figure 12. This
figure shows that there is a strong increase in damping with decreasing gap width. The
results from the ‘‘narrow gap’’ solution show good agreement with the experimental
results. It is evident that the damping coefficients for the finite element calculations are
zero, because the viscosity of the air is neglected.

CONCLUSIONS

The conclusions to be drawn from the present investigation are as follows.
For narrow gaps an analytical solution was obtained. The ‘‘narrow gap’’ solution

includes the effects of inertia, viscosity, compressibility and thermal conductivity.
The motion of a rigid plate oscillating normal to a fixed surface is governed by a number

of dimensionless parameters: the shear wave number, the reduced frequency, the ratio of
specific heats, the square root of the Prandtl number, the narrowness of the gap and the
aspect ratio of the plate. With these dimensionless parameters the range of validity can,
in contrast with previous publications in this area, be determined relatively easy.

The shear wave number, which is a measure for the ratio between inertial forces and
viscous forces, indicates that for narrow gaps the viscosity of the air has to be taken into
account.

A special experimental set-up was designed with the use of the dimensionless parameters.
Substantial frequency shifts and very large damping values were measured with satisfying
accuracy.

Calculations and experiments show fair agreement; the transition from inertial
dominated flow to viscous dominated flow is demonstrated. The viscosity of the air causes
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a strong damping effect for narrow gaps, which is an interesting point regarding the practical
application of this research.
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APPENDIX A: BASIC EQUATIONS

The equations governing the motion of the air between an oscillating plate parallel to
a fixed surface are as follows: (a) the Navier–Stokes equations, for a constant value of the
viscosity, m,
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1ȳ

+
1w̄
1z̄%,

(A2)

r̄$1w̄
1t

+ ū
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(b) the equation of continuity,

1r̄

1t
+

1(r̄ū)
1x̄

+
1(r̄v̄)
1ȳ

+
1(r̄w̄)

1z̄
=0; (A4)

(c) the equation of state for an ideal gas,

p̄= r̄R0T�, (A5)

where R0 can be written as:

R0 = p0/r0T0; (A6)

(d) the energy equation, for a constant value of the thermal conductivity l and no internal
heat generation,
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where F is the viscous dissipation function
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Assuming sinusoidal motion and no mean flow, one has

ū= c0u(x̄, ȳ, z̄) eivt, p̄= p0[1+ p(x̄, ȳ, z̄) eivt], v̄= c0v(x̄, ȳ, z̄) eivt,

p̄= r0[1+ r(x̄, ȳ, z̄) eivt], w̄= c0w(x̄, ȳ, z̄) eivt, T� =T0[1+T(x̄, ȳ, z̄) eivt], (A9)

with u, v, w, p, r and T being small dimensionless perturbations. The mean pressure and
the mean density are related according to p0 = r0c2

0 /g.
Dimensionless co-ordinates are introduced:

x= x̄/lx , y= ȳ/ly , z= z̄/h0. (A10)

When higher order terms are neglected, the equation can be written in a linearized,
dimensionless form. The equations are
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where

s= h0zr0v/m shear wave number, s=zmCp /l square root of the Prandtl number,

k=vh0/c0 reduced frequency,

g=Cp /Cv ratio of specific heats, g= h0/lx narrowness of the gap,

a= ly /lx aspect ratio of the plate. (A17)
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APPENDIX B: ‘‘NARROW GAP’’ SOLUTION

When the gap width is small in comparison with the dimensions of the plate, and the
velocity w is negligible with respect to the in-plane velocities u and v (i.e. gW 1, g/sW 1,
w/vW 1 and w/uW 1), the equations (A11–16) can be simplified to
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, (B1–3)
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=−ikr, p= r+T, iT=
1

s2s2

12T
1z2 + i$g−1

g %p. (B4–6)

The boundary conditions are as follows:

at z=0, u=0, v=0, w=0, T=0 (isothermal wall); at z=1

u=0, v=0, w=ikh, T=0 (isothermal wall); at x=−1 p=0,

at x=1 p=0; at y=−1 p=0, at y=1 p=0. (B7)

From equation (B3) it follows that the magnitude of the pressure perturbation, p, depends
only on the in-plane coordinates x and y. Because the pressure perturbation is independent
of the co-ordinate z, the solution for equation (B6) can be written as:

T=[(g−1)/g]pA(ss, z), (B8)

where

A(ss, z)= [(sinh (sszi(z−1))− sinh (ssziz))/sinh (sszi)+1]. (B9)

Substitution of equation (B8) into equation (B5) gives

r= p{1− [(g−1)/g]A(ss, z)}. (B10)

The solution for equation (B1) can be written in the form

u=i(g/k)(1/g)(1p/1x)A(s, z). (B11)

Similarly, it follows that

v=i(g/ak)(1/g)(1p/1y)A(s, z). (B12)

Finally, the equation of continuity (B4) has to be satisfied. Inserting the equations (B11),
(B12) and (B10) gives
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(B13)

Integrating with respect to z gives
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where
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Rearranging equation (B14) for the pressure perturbation p yields

g2012p
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2

012p
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g %B(ss)7+i{w1 −w0}%. (B16)

The dimensionless velocities w1 and w0 can be expressed as in equations (B7). Substitution
of equations (B7) into equation (B16) finally gives the equation for the pressure
perturbation p in the gap:
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From equation (B17) the expression for the (complex) polytropic constant n can be
obtained (note that this constant was obtained by integrating over the layer thickness):

n=[1− [(g−1)/g]B(ss)]−1. (B18)

Substitution of expression (B18) in equation (B17) gives the ‘‘narrow gap’’ equation:

g2012p
1x21+0ga1

2

012p
1y21=−

k2g

B(s) $pn+ h%. (B19)

Equation (B19) is solved by assuming

p= s
a

q=1,3,5..

M(x) cos 0qpy
2 1. (B20)

By this assumption the boundary conditions for p at y=−1 and y=1 are automatically
satisfied. Substitution of expression (B20) in equation (B19) gives a differential equation
for the function M. Solving for M from this equation and taking into account the
boundary conditions gives
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(B21)

The function D is introduced according to

D=z(qp/2)2(1/a)2 − k2g/g2B(s)n. (B22)

Finally the solution for the pressure perturbation is obtained:
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1
q
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cosh (D) % cos 0qp

2
y1. (B23)

The dimensionless force, acting on the lower side of the plate, can be obtained by
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integration. This gives

Fgap =
32
p2

1
g2

k2gh
B(s)

s
a
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1
q2

1
D2 $1−

tanh (D)
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Now that the pressure distribution is known, all quantities can be obtained. This is done
by inserting the solution for p in the appropriate equations. The temperature perturbation
T can be obtained from equation (B8). Equation (B10) gives the density distribution.
Equations (B11) and (B12) are used to obtain the velocity perturbations u and v
respectively. The velocity w can be calculated by integrating equation (B4) with respect
to z.

APPENDIX C: BEHAVIOUR OF THE NARROW GAP SOLUTION FOR LOW SHEAR
WAVE NUMBERS: REYNOLDS EQUATION

For low shear wave numbers the inertial forces can be neglected compared to the viscous
forces. In this situation the function B(s) (see section 4.1 and Appendix B) can be
approximated by

B(s)3 1
12is

2 (C1)

The polytropic constant n reduces to 1 for low shear wave numbers. This means that the
process occurs isothermally for low shear wave numbers. A low shear wave number implies
that inertial effects can be neglected. The ‘‘narrow gap’’ equation for the pressure
perturbation p (equation (B19)) now reduces to

g2 12p/1x2 + (g/a)2 12p/1y2 − (12ik2g/s2)p=(12ik2g/s2)h (C2)

This equation is a modified form of the Reynolds equation. Equation (C2) can be derived
directly from the complete, non-linear Reynolds equation. In this case no stretch or wedge
effects are present. When small perturbations and dimensionless co-ordinates are
introduced, equation (C2) is obtained.

APPENDIX D: BEHAVIOUR OF THE NARROW GAP SOLUTION FOR HIGH SHEAR
WAVE NUMBERS: WAVE EQUATION

For high shear wave numbers the viscous forces can be neglected compared to the
inertial forces. In this situation function B(s) (see section 4.1 and Appendix B) can be
approximated by

B(s)3 1 (D1)

The polytropic constant n reduces to g for high shear wave numbers. This means that the
process occurs adiabatically (isentropically). A high shear wave number implies that
viscous effects can be neglected. The ‘‘narrow gap’’ equation (B19) for the pressure
perturbation p now reduces to

g2 12p/1x2 + (g/a)2 12p/1y2 + k2p=−k2gh. (D2)

This equation is a modified form of the wave equation. Equation (D2) can be derived
directly from the wave equation. When the pressure is assumed constant across the gap
width, small perturbations and dimensionless co-ordinates are introduced, and the
resulting equation is integrated with respect to the gap width, equation (D2) is obtained.
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APPENDIX E: LIST OF SYMBOLS

a = ly /lx , aspect ratio of the plate
Cp specific heat at constant pressure
Cv specific heat at constant volume
c0 =z(gp0/r0), undisturbed speed of sound
ceff effective speed of sound
E Young’s modulus
F� force
F dimensionless force
fn phase-resonance frequency
g = h0/lx , dimensionless gap width
H transfer function
h� = h0[1+ h eivt], gap width
h0 mean gap width
h dimensionless displacement amplitude of the oscillation
i =z−1, imaginary unit
k =vh0/c0, reduced frequency
lx length in the x-direction
ly length in the y-direction
lz length in the z-direction
m mass of the plate
n polytropic constant
p̄ = p0[1+ p eivt], pressure
p0 mean pressure
p dimensionless amplitude of the pressure perturbation
q summation index, q=1, 3, 5, . . .
s = h0z(r0v/m), shear wave number
T� =T0[1+T eivt], temperature
T0 mean temperature
T dimensionless amplitude of the temperature perturbation
t time
ū = c0u eivt, velocity component in the x direction
u dimensionless amplitude of the velocity in the x direction
v̄ = c0v eivt, velocity component in the y direction
v dimensionless amplitude of the velocity in the y direction
w̄ = c0w eivt, velocity component in the z direction
w dimensionless amplitude of the velocity in the z direction
x̄ = lxx, Cartesian x co-ordinate
x dimensionless x co-ordinate
Y mobility function
ȳ = lyy, Cartesian y co-ordinate
y dimensionless y co-ordinate
z̄ = h0z, Cartesian z co-ordinate
z dimensionless z co-ordinate
g =Cp /Cv , ratio of specific heats
k spring stiffness
l thermal conductivity
m dynamic viscosity
j dimensionless damping coefficient
r̄ = r0[1+ r eivt], density
r0 mean density
r dimensionless amplitude of the density perturbation
s =z(mCp /l), square root of the Prandtl number
v angular frequency


